Spherical Dirac GJMS operator determinants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Cohomology for the Cubic Dirac Operator

Let g be a complex semisimple Lie algebra and let r ⊂ g be any reductive Lie subalgebra such that B|r is nonsingular where B is the Killing form of g. Let Z(r) and Z(g) be, respectively, the centers of the enveloping algebras of r and g. Using a Harish-Chandra isomorphism one has a homomorphism η : Z(g) → Z(r) which, by a well-known result of H. Cartan, yields the the relative Lie algebra cohom...

متن کامل

The Microscopic Dirac Operator Spectrum

We review the exact results for microscopic Dirac operator spectra based on either Random Matrix Theory, or, equivalently, chiral Lagrangians. Implications for lattice calculations are discussed.

متن کامل

Dimensional Reduction of Dirac Operator

We elaborate an explicit example of dimensional reduction of the free massless Dirac operator with SU(3)-symmetry, defined on 12-dimensional manifold, which is the total space of principle SU(3)-bundle over 4-dimensional manifold. It turns out that after the dimensional reduction we obtain the “usual” Dirac operator, defined on 4-dimensional pseudo-Riemannian (non-flat) manifold but with mass t...

متن کامل

Dirac Operator on Embedded Hypersurfaces

New extrinsic lower bounds are given for the classical Dirac operator on the boundary of a compact domain of a spin manifold. The main tool is to solve some boundary problems for the Dirac operator of the domain under boundary conditions of Atiyah-Patodi-Singer type. Spinorial techniques are used to give simple proofs of classical results for compact embedded hypersurfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2014

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/48/2/025401